激光振镜的原理
时间:2017-05-13
来源:新特光电
访问量:1906
激光振镜的原理是:输入一个位置信号,摆动电机(激光振镜)就会按一定电压与角度的转换比例摆动一定角度。整个过程采用闭环反馈控制,由位置传感器、误差放大器、功率放大器、位置区分器、电流积分器等五大控制电路共同作用。
而数字激光振镜的原理则是在模拟激光振镜的原理上将模拟信号转换成数字信号。
扫描激光振镜是打标机的核心部件,打标机的性能主要取决于扫描激光振镜的性能。
当前国内使用的激光振镜都属于模拟激光振镜,实现主要还是使用模拟器件,因为模拟器件容易受到周围环境的电磁辐射干扰,所以在使用过程中会出现有散 点,线条弯曲,填充具有不规则底纹等现象。且国内模拟激光振镜速度相比国外都比较慢 其小步长阶跃响应时间都在300um以上。数字激光振镜使用数字信号进行运算来控制电机,能够有效抑制环境干扰,即使工作环境电磁干扰严重,也可以正常使用
您可能感兴趣的文章
平板锥透镜简要介绍及典型应用案例
平板锥透镜是基于N-BK7玻璃基底和液晶聚合物材料制成,呈现为前后玻璃衬底,中间LCP功能膜层的三明治结构。相较于传统的锥透镜,平板锥透镜为平板结构,无立体锥尖,更易集成;同时其锥尖部分的结构成型依赖于液晶分子的取向变化,可以达到微米级的加工精度;另外还具备大色散的特点。
2023-07-19
查看更多
激光模式转换器简要介绍及其典型应用案例
激光模式转换器是一种能够实现激光由基础的TEM00模式转换为更高阶的Hermite-Gaussian(厄米-高斯)模式的衍射光学元件,不同结构及相位分布可实现不同的模式转换。激光模式转换器利用光配相技术在玻璃基底表面制作不同快轴分布的液晶聚合物薄膜,并通过精确控制液晶聚合物的厚度来控制o光和e光的光程差(或相位差),从而实现不同模式的转换。
2023-07-19
查看更多
艾里光束转换器简要介绍及其典型应用领域
我们提供的艾里光束转换器为二维、一阶艾里光束转换器,艾里光束转换器为偏振相关元件,可用于将高斯光束转换为具有横向自加速特性、自恢复特性、无衍射特性的艾里光束,其在微粒移动、材料加工、显微成像、光探测领域的应用被广泛研究。
2023-07-19
查看更多
简要介绍涡旋波片及其典型应用领域
涡旋波片是基于N-BK7玻璃基底和液晶聚合物材料制成,呈现为三明治结构,安装于标准SM1透镜套筒中。涡旋波片具有偏振相关的光学特性,根据入射光束偏振态的不同,可用于生成矢量偏振光束或具备螺旋相位波前的涡旋光束,可将TEM00模高斯光束转换为“空心孔型”的拉盖尔-高斯强度分布。相较于传统的光场调控方式,涡旋波片具有高效稳定、操作简易、功能专一的优势;其真零级特点也帮助实现了较低的波长敏感性、较高的温度稳定性和较大的入射角范围。涡旋波片已经成功应用在量子光学、光场调控、大气光通信、超分辨率成像、光镊、精密激光加工等领域。
2023-07-19
查看更多
简要介绍迷你型二维音圈扫描镜(电动二维扫描镜)及其应用领域
二维音圈扫描镜的核心技术是基于可变形镜片的工作原理。镜片由一个容器组成,容器里装有光学流体,并用弹性聚合物薄膜进行密封。电磁驱动器对容器施压,导致镜片弯曲。因此,通过驱动器线圈内的电流改变来控制镜头的焦距(或表面的曲面形状),进而实现光束扫描。我们全新设计的二维音圈扫描镜给研究和产品开发提供了光束扫描的颠覆性新方案。
2022-11-23
查看更多
衍射光束整形优化激光玻璃切割工艺
新特光电为激光玻璃切割应用提供的另一个解决方案就是衍射多焦点衍射光学元件,它显示出经改进的斜切效果。这种独特的衍射光学元件在聚焦轴上分离光束,并以受控的间距产生多个焦点。这种组件的最佳效果通常与多焦点模组一起使用时实现,该模组的数值孔径为0.45NA,通光孔径为20mm。
2021-08-18
查看更多
衍射光学元件(DOE)清洁操作说明
我们提供的所有衍射光学元件(DOE)元件都在洁净室环境下进行清洁和包装。但是,在客户现场使用或安装过程中,产品可能会弄脏。请参见以下清洁说明,并确保在尝试清洁产品之前遵循这些说明。
2021-08-09
查看更多
微电子激光加工中使用的平顶光束
平顶(TH)光束是一种强度分布平整且均匀的光束,边缘尖锐,能量迅速下降至零。平顶光束的形状可以是正方形、矩形、直线、圆形或其他任何形状。
2021-08-09
查看更多
扩散器——可使任何准直输入光束转换为具有强度均匀的输出光束
扩散器又名均匀化器/光学漫射器衍射光学元件(DOE):允许将单模或多模输入光束转换成明确定义的输出光束,即具有想要的任意形状以及均匀的强度分布。
2021-08-09
查看更多
衍射光栅——包含衍射光的周期性结构的光学元件
衍射光栅是一种利用衍射现象的光学器件,即衍射光学的一种。它包含一个周期性结构,导致空间变化的光学幅度和/或相位变化。最常见的是反射光栅,其中反射表面具有周期性的表面起伏,导致与位置相关的相位变化。然而,也有透射光栅,其中透射光获得与位置相关的相位变化,这也可能来自表面起伏,或者来自全息(干涉)图案。
2021-08-09
查看更多