公司新闻行业动态激光百科新闻月报图片中心视频中心

平顶光束整形器在激光加工与材料处理方向上的应用

时间:2020-03-31 来源:新特光电 访问量:2133

激光加工与材料处理

激光加工与材料处理无疑是激光器最大的应用领域之一。近年来在传统的切割、焊接、打标的基础上,越来越多的新激光加工处理工艺被开发出来并迅速在业界推广。不同种类的工艺使用各种波长、强度、脉冲宽度的激光,也对光斑形貌、分布、景深等提出丰富的要求。

DOE在针对特定激光加工处理应用的光斑优化中扮演核心角色。通常采用DOE可以从两方面优化激光加工处理的效果:倍增处理速率和产率;提升处理精度,如边缘整齐度、热影响区域、处理效率等。

熔蚀与构造

激光熔蚀是指通过激光辐照从材料(通常是固体)表面去除材料。熔蚀通常采用小区域高能量脉冲实现。激光溶蚀具有多种用途,如纳米材料制备,金属或介电薄膜沉积,超导结构制备,金属部件常规焊接与邦定,MEMS结构加工等。

采用平顶发生器或涡旋位相板可以产生边界锐利的光斑构型,在溶蚀过程中确保精确的材料移除范围。多焦点分束器可以实现并行处理,提升产率。

焊接

采用激光可将多个金属或塑料机件连接在一起。激光光束提供一个集中的热源,实现高速率、大深度、窄缝宽焊接。激光焊接通常在大规模制造中自动化进行。与切割技术协同,激光焊接可用于多种焊接类型(点焊,直/曲线焊,钎焊等)。

能量分布均匀的激光有助于焊接温度的均匀分布,生成高质量焊缝。采用分束器产生的多焦点焊接,可提升加工速率。

钎焊

在钎焊过程中,激光烧熔焊条并将两块金属焊接在一起,这种工艺广泛使用在汽车工业中。如果被焊接金属在焊条熔融之前被清洁、预热,将能提升焊接效果。

专门为这种工艺订制的匀化器,可以在主焊的平顶光斑前端两侧产生两个小光斑用于待焊金属的清洗和加热,提升钎焊的强度和焊缝的整洁度。

激光微孔

激光微孔加工是指利用激光在薄料上打小孔,通常用于薄片或薄膜,如香烟卷纸、食品包装纸(延长保质期和新鲜度)。这类应用需要精密的、等间距的微孔,分束型DOE是理想的产品。

金属及玻璃切割

激光切割通过将高功率激光引导并聚焦到工件表面,通过运动机构扫描并按指定路线切割工件。激光切割为工业制造的重要手段;常常需要在不使用长焦透镜的情况下延长焦点的焦深,以减少切割区域的崩边、熔边,提升切割质量。

金属切割利用激光聚焦产生的局部热量加热材料,达到熔点以切断样品。融化的金属被气流带走。

玻璃切割通常使用红外波段的高功率激光器。因为玻璃吸收较低,因此需要更高功率的激光;使用DOE可拉长焦深,使得能量在玻璃的内部沉积,实现单次切割,而不需要调整焦点位置后再次扫描。这种方式对于隐裂切割特别有用,局部受热使得切缝变脆而不是熔融,后续可用机械方式沿切缝分离。

钻孔

激光钻孔利用聚焦的重复脉冲激光器汽化金属,形成通孔。脉冲能量越大则汽化的金属越多。作为激光加工领域主流应用之一,多年来发展了各种打孔技术:单脉冲,叩击,旋转打孔,螺旋打孔等。激光打孔在多种场景应用,包括橡胶、硅衬底等。

配合打能量激光器,分束(多点)DOE可用于提升钻孔产率;平顶型光斑有利于提升孔壁的垂直度和边缘锐度;涡旋滤光片可用于环形孔。

激光剥离

激光剥离(Laser Lift Off,LLO)是一种选择性的分离两种材料的技术。激光投射到衬底与镀层材料(如蓝宝石衬底上的GaN)中间的粘结层上。激光剥离可以处理大尺寸器件并达到要求的精度与可重复性。因此,激光玻璃在LED工业中剥离发光薄膜中广泛使用,同时也用于显示、移动终端等制程。

表面处理(硬化与熔覆)

激光表面处理的原理基于高功率密度的相关激光与表面在特定气氛(真空,保护气,过程气)下的相互作用导致的表面改性。典型的应用包括表面硬化与表面熔覆。

表面硬化是一种热处理,通过将材料在短时间内加热至临界温度以上并迅速冷却,金属晶格将不能恢复初始结构并达到很高的硬度。

表面熔覆是另一种热处理过程。元件表面被加热至熔点,熔融物固化并结晶,而其化学成份不便。

您可能感兴趣的文章