

solutions for microscopy

Product portfolio

Our solutions to enhance your microscopes

Focus tunable lenses

- Fast autofocus
- Fast detection
- Image stacking

Laser speckle reducers

- Homogeneous laser illumination field
- Noiseless
- Compact

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Product portfolio

Our solutions to enhance your microscopes

Focus tunable lenses

- Fast autofocus
- Fast detection
- Image stacking

Laser speckle reducers

- Homogeneous laser illumination field
- Noiseless
- Compact

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Current situation

How do we move from 2D to 3D

Goals

- Imaging of 3D cell cultures
- Imaging of whole embryos
- In-vivo imaging

Limitations

- Depth of field DOF
- Mechanical vibrations
- Focusing speed

Solution

• 3D microscope

Current solutions

To focus along Z-axis

	Motorized Z	Piezo Z	Focus Tun	able Lens
				VisionSystemi Awards BOLD
Price	\$\$	\$\$\$	\$	3x cheaper than piezo's
Speed	+	+++	+++ (100Hz)	100x faster than motorized Z
Travel Range	+++	+	++	e.g. 600 µm with 40x objective
Compactness	+	++	+++	No table-top controller
Vibrations	+	+	+++	No vibrations
Thermal Drift	+	+	+++	Temp. comp. sensor

Working principle

Membrane with fluid and actuator

Human eye: Ciliary muscle actuates the lens curvature Optotune lens: Electromagnetic actuator controls the lens curvature

Our product range

Liquid lenses for microscopy applications

	EL-3-10-TC	EL-10-30-TC	EL-10-30-C(i)	EL-12-30-TC	EL-16-40-TC
		Copours of Copours		Finant	Contraction of the second seco
Focal power range (dpt)	-13 to +13	+8 to +22	-1.5 to +3.5 +5 to +10	-5 to +5	-2 to +3 -10 to +10
Clear aperture (mm)	3	10	10	12	16
Outer diameter (mm)	10	30	30	30	40
Rise / settling time (ms)	1/4	2.5 / 20	2.5 / 15	5 / 25	5 / 25
Repeatability (dpt)	N/A	< 0.1	< 0.1	< 0.1	< 0.1
Typical use case	Hand held devices	Conventional microscopes	Conventional microscopes	Portable microscopes	High end imaging systems

Our controllers

Fast plug & play for easy integration

	EL-E-4	EL-E-4i	ICC-4-C	Gardasoft CL-180	Gardasoft CL-160
	Coptolune Levis dever a	Coperine unamere			
Application	R&D, portable systems	R&D, portable systems	Industrial 24/7 operation	Industrial 24/7 operation	OEM
Current range (mA)	-290 to + 290	-290 to + 290	-500 to +500	-400 to +400	-290 to +290
Supply Voltage (V)	5	5	24	24	3.3 - 5
Interfaces	USB	USB	USB, Ethernet, Analog, UART, I2C	GigE, RS232, Analog	I2C, UART, Analog
Connection	FPC	Hirose	Hirose	Hirose	-
Channel(s)	1	1	4	1	1
SDKs	C#, LabVIEW, Python	C#, LabVIEW, Python	C#, Python	Triniti SDK, C#, C++, VB	

Integration of liquid lenses in microscopes

40x

60 µm

0%

* Magnification changes are linear, it is possible to compensate it via software

160 μm (20D:640 μm)

** To eliminate the magnification changes, a 4f system with a custom telecentric tube lens is required

23.7%

40x

Integrations How ETL can become part of your systems

Techniques overview

Different techniques, different applications

3D Microscopy

Wide-Field

Two-Photon

Digital Microscopy

Confocal

Light Sheet

Raman Spectroscopy

Integration: microscopy examples

Collaboration with our partners

Mvotem Optics [®] 募藤光

*Y*HeliconSoft

Integration example: **Tucsen microscope – automated zoom & focus**

- Lens control fully integrated into system software
- Tunable lens: EL-10-30

Off the shelf Z-focus solutions

Based on Optotune EL-10-30 and EL-16-40

Life Sciences & Scientific Imaging

Microscopy Volume Imaging Solutions

Industries & Quality Control

3D Solutions For Microscopes And Automated Vision Systems

NeoScan Fast Volume Scanning

ThunderScan Ultra High Speed Scanning

ZeeScan 3D Add-On for microscopes

ZeeCam 3d microscope camera

Alpha³ Light Sheet Microscope

InSight Real Time 3D Acquisition

ZeeScope 3d measurement microscope

SmartScan Motorless focus control

Preferred partner to develop new technologies

Publications using Optotune Lenses for Microscopy

<u>Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a</u> <u>structured illumination microscope with electrically tunable lens</u>

Chen Chong, Li Simin, Wen Gang, Liang Yong, Wang Linbo, Yang Guang, Jin Xin, and Li Hui, Biomed. Opt. Express 11, 1203-1215 (2020) https://doi.org/10.1364/BOE.382114

Speeded-Up Focus Control of Electrically Tunable Lens by Sparse Optimization

Iwai, D., Izawa, H., Kashima, K. et al. Speeded-Up Focus Control of Electrically Tunable Lens by Sparse Optimization. Sci Rep 9, 12365 (2019). https://doi.org/10.1038/s41598-019-48900-z

Large depth-of-field 3D shape measurement using an electrically tunable lens

Xiaowei Hu, Guijin Wang, Yujin Zhang, Huazhong Yang, and Song Zhang, Opt. Express 27, 29697-29709 (2019) https://doi.org/10.1364/OE.27.029697

Experimental validations of a tunable-lens-based visual demonstrator of multifocal corrections

Vyas Akondi, Lucie Sawides, Yassine Marrakchi, Enrique Gambra, Susana Marcos, and Carlos Dorronsoro, Biomed. Opt. Express 9, 6302-6317 (2018) https://doi.org/10.1364/BOE.9.006302

Cell mechanotransduction with piconewton forces applied by optical tweezers

Fabio Falleroni, Vincent Torre, Dan Cojoc, Frontiers in cellular nanoscience (2018), https://doi.org/10.3389/fncel.2018.00130

All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser

M. Bathe-Peters, P. Annibale, and M. J. Lohse, Optics Express Vol. 26, Issue 3, pp. 2359-2368 (2018), https://doi.org/10.1364/OE.26.002359

Three-dimensional Two-photon Optogenetics and Imaging of Neural Circuits in vivo

B. W. Yang, L. Carrillo-Reid, Y. Bando, D.S. Peterka, R. Yuste, bioRxiv preprint (2017). https://doi.org/10.1101/132506

NeuBtracker-imaging neurobehavioral dynamics in freely behaving fish

B. P. Symvoulidis, A. Lauri, A. Stefanoiu, M. Cappetta, S. Schneider, H. Jia, A. Stelzl, M. Koch, C. C. Perez, A. Myklatun, S. Renninger, A. Chmyrov, T. Lasser, W. Wurst, V. Ntziachristos, G. G. Westmeyer, Nature Methods - Brief communication (2017). doi:10.1038/nmeth.4459

High-speed dual-layer scanning photoacoustic microscopy using focus tunable lens modulation at resonant frequency

B. K. Lee, E. Chung, S. Lee, T. J. Eom, Optics Express, Vol 22, pp. 26427 (2017). doi.org/10.1364/OE.25.026427

Quantifying three-dimensional rodent retina vascular development using optical tissue clearing and light-sheet microscopy

B. J. N. Singh, T. M. Nowlin, G. J. Seedorf, S. H. Abman, D. P. Shepherd, J. Biomed. Opt., Vol 22, Issue 7, (7), pp. 2035-2046 (2011). doi:10.1117/1.JBO.22.7.076011

Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges

B. G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, and M. Duocastella, Optica Vol. 4, Issue 3, pp. 367-373 (2017)

Reduction of coherent artefacts in super-resolution fluorescence localisation microscopy

A. P. Georgiades, V. J. Allan, M. Dickinson, T. A. Waight, Journal of Microscopy (2016); doi: 10.1111/jmi.12453

High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes

Y. Nakai, M. Ozeki, T. Hiraiwa, R. Tanimoto, A. Funahashi, N. Hiroi, A. Taniguchi, S. Nonaka, V. Boilot, R. Shrestha, J. Clark, N. Tamura, V. M. Draviam and H. Oku, Rev. Sci. Instrum. 86, 013707 (2015)

Multi-depth photoacoustic microscopy with a focus tunable lens

Kiri Lee, Euiheon Chung, Tae Joong Eom, Proc. of SPIE Vol. 9323 932330-1 (2015)

Calcium transient prevalence across the dendritic arbour predicts place field properties

M. E. J. Sheffield, D. A. Dombeck, Nature 517, 200-204 (2015)

3d high- and superresolution imaging using single-objective SPIM

Remi Galland et al., Nature Methods 3402, 1-4 (2015)

Fast imaging of live organisms with sculpted light sheets

A. K. Chmielewski, A. Kyrsting, P. Mahou, M. T. Wayland, L. Muresan, J. F. Evers & C. F. Kaminski, Scientific Reports 5, Article number: 9385 doi:10.1038/srep09385 (2015)

A rapid image acquisition method for focus stacking in microscopy

D. Clark, B. Brown, Microscopy Today, Volume 23, Issue 04, pp 18-25 (2015)

Rapid quantitative phase imaging for partially coherent light microscopy B. José A. Rodrigo and Tatiana Alieva, Optics Express, Vol. 22, Issue 11, pp. 13472-13483 (2014)

Investigation of diffraction-based measurement errors in optical testing of aspheric optics with digital micromirror devices

Stephan Stuerwald, Robert Schmitt, J. Micro/Nanolith. MEMS MOEMS 13(1), 1-8, (2014)

Product portfolio

Our solutions to enhance your microscopes

ocus tunable lenses

- Fast autofocus
- Focus detection
- Image stacking

Laser speckle reducers

•

- Homogeous laser illumination field
- Noiseless
- Compact

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Current situation

How do we improve laser illumination

Goals

- Even illumination field
- Better contrast
- Higher image quality

0

Limitations

- Noise
- Size
- Isotropic diffusers

Solution

• Laser speckle reducer

Our product range

Laser speckle reducers for laser applications

	LSR-3005	LSR-4C	
	Bitotune LSR-340		a) No LSR – Contrast 0.27 b)
Aperture	5 mm	18.5 mm	
Size (L x H x D)	48x48x8.8 mm	40x40x3.8 mm	
Standard diffuser angle	8.5°	8.5°	
Oscillation frequency	300 Hz or 180 Hz	120 Hz +/- 10Hz	LSR OFF – Contrast 0.26
Oscillation amplitude	0.3 mm	0.8 mm	c)
Electronics	Included	Included	
Transmission	> 93	> 98 (coated) >94 (uncoated)	
Operating Life time	2.000 h	> 40.000 h	LSR ON – Contrast 0.06

Application example

LSR boosts image quality in super-resolution fluorescence microscope

MRC5 cells stained with Alexa Fluor 647

Product portfolio

Our solutions to enhance your microscopes

ocus tunable lenses

- Fast autofocus
- Focus detection
- Image stacking

Laser speckle reducer

- Homogeous laser illumination field
- Noiseless
- Compact

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Current situation

How do we improve your scanning system

Goals

- Change the Light Plane
- AOI selection
- Laser scanning

Limitations

- Size
- Center of rotation not on mirror surface
- Double reflection

Solution

• 2D mirror

Our product range 2D Mirrors

MR-15-30 standard	MR-10-30 2 resonant axis

15 mm	10 mm	
25°	12.5°	
20 Hz	280 Hz	
25°	25°	
20 Hz	20 Hz	
30-100 µrad	30-100 μrad (slow axis)	
30x14.5	30x14.5	
yes	yes	
	15 mm 25° 20 Hz 25° 20 Hz 30-100 μrad 30x14.5 yes	